

Oceanographic Commission UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile) TSUNAMI EARLY WARNING SYSTEMS AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME 19-30 August 2024, Valparaiso, Chile

TWC operations: Real-time Earthquake Detection and Fast Source Characterization, Methods and Limitations

> Kenji Satake University of Tokyo

TWC operations

- Locating earthquakes
- Estimating Magnitudes
- Seismic moment and magnitude
- Moment tensor solutions
- Centroid Moment Tensor inversion
- □ W phase CMT inversion
- Summary of magnitudes

Locating Earthquakes

How do we measure earthquakes?

When an earthquake occurs, the seismic waves travel through the Earth to the seismic station where the information is transmitted to distant computers.

A seismograph detects

and records earthquakes

A seismogram is the earthquake record

International Tsunami Information Center

Distance of earthquake from seismometer

Locating an earthquake...the basics

- 1. Determine distance of EQ from three seismic stations by calculating the S minus P arrival times.
- 2. Plot on the travel-time graph.

3. Intersection of the circles gives the location.

Slip distributions of Chilean earthquakes

Earthquake Rupture Complexity

Great Earthquakes (M ≥ 8)

- Shake for a long time (10s sec to 2-3 minutes)
- Rupture for 100s miles

Ishii et al., 2005

Measuring Earthquake size

Historical – Used macroseismic information

- Fatalities
- Maximum shaking
- Area of intense shaking
- Did not correlate well from one quake to the next because damage depended on
 - "True" size (i.e., magnitude)
 - Distance from the epicenter
 - Building design
 - Surface material (rock or dirt) beneath buildings
 - Proximity to populated regions

Modified Mercalli Intensity Scale

CIIM Intensity	People's Reaction	Furnishings	Built Environment	Natural Environment
1	Not felt			Changes in level and clarity of well water are occasionally associated with great earthquakes at dis- tances beyond which the earth- quakes felt by people.
Ш	Felt by a few.	Delicately suspended objects may swing.		
Ш	Felt by several; vibration like pass- ing of truck.	Hanging objects may swing appreciably.		
IV	Felt by many; sen- sation like heavy body striking building.	Dishes rattle.	Walls creak; window rattle.	
v	Felt by nearly all; frightens a few.	Pictures swing out of place; small objects move; a few objects fall from shelves within the community.	A few instances of cracked plaster and cracked windows with the community.	Trees and bushes shaken noticeably.
VI	Frightens many; people move unsteadily.	Many objects fall from shelves.	A few instances of fallen plaster, broken windows, and damaged chimneys within the community.	Some fall of tree limbs and tops, isolated rockfalls and landslides, and isolated liquefaction.
VII	Frightens most; some lose balance.	Heavy furniture overturned.	Damage negligible in buildings of good design and construction, but considerable in some poorly built or badly designed structures; weak chimneys broken at roof line, fall of unbraced parapets.	Tree damage, rockfalls, landslides, and liquefaction are more severe and widespread wiht increasing intensity.
VIII	Many find it difficult to stand.	Very heavy furniture moves conspicuously.	Damage slight in buildings designed to be earthquake resistant, but severe in some poorly built structures. Widespread fall of chimneys and monuments.	
IX	Some forcibly thrown to the ground.		Damage considerable in some buildings designed to be earthquake resistant; buildings shift off foundations if not bolted to them.	
×			Most ordinary masonry structures collapse; damage moderate to severe in many buildings designed to be earthquake resistant.	

USGS ShakeMap 2010 M_w 8.8 Maule, Chile

82°W

80°W

78°W

76°W

74°W

72°W

70°W

68°W

66°W

International Tsunami Information (

Earthquake Magnitude

Richter and Gutenberg's Teleseismic magnitudes Body wave Magnitude mb and Surface wave and M_S

mb = log (A/T) + Q(D,h)

T: period (secs), $0.1 \le T \le 3.0$ A: P wave amplitude (microns) (not necessarily the maximum) Q: scale factor (D $\ge 5^{\circ}$) Ms = log (A/T) + 1.66 log D + 3.3

A: maximum amplitude (microns) vertical component of the surface wave within the period range 18 <= T <= 22.
D: 20° ≤ D ≤ 160°.

No depth corrections!

- 1) Time window saturation time window that is less than duration of rupture (particularly affects mb)
- 2) Spectral saturation Wavelength too short to see entire rupture (affects mb, M_L , and M_s)

How do we overcome this problem?

- \rightarrow Examine longer period waves
- \rightarrow M_w, Mwp, Mantle magnitude (Mm), Centroid Moment Tensor (CMT)
- \rightarrow GNSS/GPS data

Wavelength and Period of seismic waves

UNESCO/IOC-NOAA SHOA International Tsunami Information Center

Ruff (1989)

Earthquake size - Seismic Moment (M₀)

Moment magnitude (Mw)

$$Mw = (2/3) \log_{10} (Mo) - 16.1$$

- □ Introduced in 1979 by Hanks and Kanamori
- Based on source parameter Mo and is not frequency dependent, does NOT saturate
- □ Based on earthquake energy release
- Related to fault slip and not ground shaking
- □ Used to estimate the magnitude of large earthquakes
- Very useful for tsunami modeling

Types of Magnitude Scales

Period Range

M _L	Local magnitude (California)	regional S & surface waves	0.1-1 sec						
$\mathbf{M}_{\mathbf{j}}$	JMA (Japan Meteorol. Agency)	regional S & surface waves	5-10 sec						
m _b	Body wave magnitude	teleseismic P waves	1-5 sec						
M _s	Surface wave magnitude	teleseismic surface waves	20 sec						
The methods below overcome the effects of saturation:									
Mwp	P-wave moment magnitude	teleseismic P waves	10-60 sec						
$\mathbf{M}_{\mathbf{w}}$	Moment magnitude	teleseismic surface waves	> 200 sec						
M _m	Mantle magnitude	teleseismic surface waves	> 200 sec						

UNESCO/IOC-NOAA SHOA

International Tsu Ref: USGS Seismology and Tsunami Warnings, 2006 (Earthquake Source)

Mwp Magnitude

- Moment magnitude based on initial long-period P-waves
- Developed by S. Tsuboi and others (1995)
- Empirical estimate of the moment magnitude
 integrate the vertical velocity from a seismogram
- Accurate results within **3-4 minutes** of OT (P, pP arrivals)
- Primary initial magnitude estimate at PTWC for M>6 (replaced Ms)
- Subject to site and path effects, source complexity, contamination from other large earthquakes

Mwp Magnitude

- Double integration of $v(t) \ v(t) \rightarrow Mo(t)$ $\rightarrow Mw(t)$
- Peak $Mw(t) \rightarrow Mwp$
- Fast; less prone to saturation

Force couples and moment tensor

Moment Tensor Elements

Centroid Moment Tensor Inversion

nternational isunami mormation center

Dziewonski and Woodhouse (1981)

Centroid Moment Tensor (CMT)

- Characterizes the geometry of the earthquake
- Can be used to compute surface deformation
- Fits shape/amplitude of waves to synthetic seismograms
- Usually based on longer period and very slow surface waves, so often requires around 90 minutes to compute

Global CMT (former Harvard CMT)

UNESCO/IOC-NOAA SHOA International Tsunami Information Center

Global CMT (former Harvard CMT)

2004 Sumatra-Andaman Eq

Single source 4×10^{22} Nm Mw 9.0 Five sources 12×10^{22} Nm Mw 9.3

Introduced by Kanamori and Rivera (2008)

- The W-phase travels several times faster than surface waves
- Gives fault geometry and authoritative magnitude 20-25 minutes after the earthquake. Now the primary method the NEIC uses to obtain initial magnitudes for strong – major earthquakes.
- Primary reason why PTWC can now quickly issue a reliable (tsunami) forecast within the first hour after an event.

W-phase CMT

Kanamori and Rivera (2008)

100

W-phase CMT

-0.04

0

1000

000

2000

W-phase CMT

2011 Tohoku, Japan, earthquake

Table 1. Real-Time W phase solutions obtained for the 2011 Tohoku Earthquake. The real-time instances of the W phase algorithm are running with a fixed depth, specified for each solution in the table.

Delay	Origin	Mw	Strike/Dip/Rake, deg	Depth, km	# chan.	Mech.
20 min	USGS automatic trigger (internal)	9.0	222.7/16.8/134.6	24.4	6	
22 min	PTWC automatic trigger 1	8.8	165.4/10.3/55.3	83.5	29	
30 min	PTWC automatic trigger 2	8.8	194.3/22.8/81.3	83.5	74	
40 min	PTWC manual trigger	9.0	190.6/11.1/76.7	24.4	105	
45 min	IPGS automatic trigger 1	9.0	199.6/10.8/93.5	24.4	31	
48 min	USGS automatic trigger (internal)	8.9	204.4/14.8/104.3	24.4	74	
1 h 02 min	USGS Published	8.9	162.0/16.9/45.1	24.4	89	
1 h 30 min	IPGS automatic trigger 2	9.0	196.3/14.4/85.1	24.4	146	

Duputel et al. (2011)

Intergovernmental Oceanographic Commission UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile) TSUNAMI EARLY WARNING SYSTEMS AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME 19-30 August 2024, Valparaiso, Chile

Thank You

Kenji Satake

University of Tokyo satake@eri.u-tokyo.ac.jp

