

UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile) TSUNAMI EARLY WARNING SYSTEMS AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME 19-30 August 2024, Valparaiso, Chile

Intergovernmental Oceanographic Commission

Real-Time Earthquake detection and Fast Source Characterization

Stuart Weinstein NOAA/NWS/PTWC

Types of Magnitude

	Name	Data used	Period range			
MI	Local magnitude	regional S and surface waves	0.1-1 sec			
mb	(short period) body wave magnitude	teleseismic P waves	1-5 sec			
Ms	Surface wave magnitude	teleseismic surface waves	(20 sec)			

Traditional magnitudes based on amplitudes of recorded data.

therefore proportional to

energy

 $M = \log(A_d/T)_{max} + \sigma(\Delta, h) + Cr + Cs$ Based on velocity Distance Regional correction for

correction

source

directionality

Optional station correction

Local magnitude

Bruce Bolt. Earthquakes. WH Freeman and Company

 $MI = \log A_{max} - \log A_0$

Defined using horizontal, short period seismometer. Therefore no period consideration.

Log A_0 correction taken from published tables and related to distance (< 600km)

The ~1 sec period response of the seismometer is similar to many small buildings, therefore still useful for engineers.

Surface wave magnitude - Ms

 $Ms = \log (A/T)_{max} + \sigma_{S}(\Delta) = \log (A/T)_{max} + 1.66 \log \Delta + 3.3$

- First defined by Gutenberg 1945.
- IASPEI Standard: Distances 2 degrees < Δ < 160 degrees. Depth h < 50 km. Any surface wave period measured on horizontal and vertical components
- NEIC:

Limit periods to 18 < T < 22 sec and only use vertical component. Distances from 20 degrees $< \Delta < 160$ degrees

DISPLAY
FOR
AUTOMATIC
SURFACE
WAVE
MAGNITUDES

ND ATMOSPH

noaa

OFPARTMENT OF COMME

-		Surface	e Wave Magnitude			1
		EXIT	13:11:59	01/10		
	CTAO bhz	DONE		6.08	9 . 88 🛆	
	KWAJ bhz	TIME	NA			
	GUMO bhz	DONE		5.68	2.35	
	WAKE bhz	DONE	I	6.49	8.51	
	KAPI bhz	TIME	NA			
	MBWA bhz	GAP	NA			
	TAU bhz	DONE		6.00	2.63	
	SNZO bhz	DONE		1.40	2.09	
	TATO bhz	DONE		6.31	8.39	
	MIDW bhz	DONE		6.55	9.46	
	NWAO bhz	DONE		6.57	9.65	
	MAJO bhz	DONE		6.01	5.34	
	INCN bhz	TIME	NA			
	QIZ bhz	TIME	NA			
	YSS bhz	TIME	NA			
	HON bhz	DONE		6.34	11.10	
	HON lhz	DONE		6.26	10.13	
	HON 1z	DONE		6.22	9.80	
	KIP bhz	DONE		6.17	9.49	
	KHU bhz	DONE		6.34	11.78	
	POHA bhz	DONE		6.35	11.16	
	UXL bhz	DONE		6.29	8.12	
	STC bhz	DONE		6.35	8.73	
	COCO bhz	TIME	NA			
	BJT bhz	TIME	NA			
	PET bhz	DONE		6.21	3.41	
	SMY 11z	DONE		6.35	7.69	
	HIA bhz	TIME	NA			
	ADK bhz	DONE		6.02	5.15	
	ATKA bhz	DONE		5.99	2.87	
S	LEEPING 01	Mean Ms is:	6.53(63) E)one 6.54(56) PRIN	Т

DISPLAY TO REVIEW SURFACE WAVE MAGNITUDE

Body wave magnitude - mb

mb = log $(A/T)_{max}$ + Q(Δ ,h)*

correction from Gutenberg 1945

- Calculated from P wave displacement amplitude. Commonly reported but very variable calculation methods:
- Fairly standard features of measurement: distance 20 deg < Δ < 100 deg, period T < 3 sec.

- IASPEI Standard: measure A_{max} from whole recorded P wave; vertical or horizontal max.
- NEIC: vertical P only, measure max amp in first 10 cycles (~10-20 sec), or manually extended to 60 sec for large earthquakes.
- China and the CTBTO: measure only first 5-6 seconds.

N. Korea Nuclear Explosion

Mb = 6.3, Ms = 4.9

Saturation

- MI, Ms and mb all suffer from saturation.
- Occurs for 2 reasons: Time window saturation: The magnitude is calculated for a time window that is less than the duration of the rupture (particularly effects mb)

Spectral saturation:

The wavelength of the wave is too short to sample the entire rupture (effects mb, Ml, and Ms)

Saturation

How do we overcome saturation?

=> Examine Longer Period Waves!

Enter Mwp, Mantle Magnitude And The CMT

INTERACTIVE TOOL TO DETERMINE MWP MOMENT MAGNITUDE

noaa

ARTMENT OF C

DISPLAY FOR AUTOMATIC MOMENT MAGNITUDE FROM MANTLE MAGNITUDE

ARTMENT OF CO

		EXIT	13:11:59 ()1/10	
	CTAO	DONE		6.37	6.85 🔼
l	RCBR	DONE		4.76	5.78
l	GUMO	DONE		6.09	6.66
l	WAKE	DONE		6.10	6.67
l	KAPI	TIME	NA		
l	MBWA	GAP	NA		
l	TAU	DONE		6.31	6.80
l	SNZO	DONE		4.39	5.53
l	TATO	DONE		6.04	6.62
l	MIDW	DONE		6.42	6.88
l	NWAO	DONE		5.88	6.52
l	MAJO	DONE		5.90	6.53
l	INCN	PEND	00:00		
l	YSS	PEND	00:00		
l	KIP	DONE		6.32	6.81
l	POHA	DONE		6.47	6.91
l	coco	PEND	00:00		
l	BJT	PEND	00:00		
l	PET	DONE		6.19	6.73
l	SMY	PEND	00:00		
l	HIA	PEND	00:00		
l	ADK	DONE		6.31	6.81
l	MA2	DONE		6.05	6.63
l	ULN	DONE		6.04	6.63
l	UNV	DONE		6.99	7.26
l	YAK	PEND	00:00		
	TLY	DONE		6.24	6.76
	ССМ	DONE		6.07	6.64
	VNDA	PEND	00:00		
	SBA	DONE		6.10	6.67
	LEEPING 08	Mean Mm	is: 6.12(24)	Mw is: 6.68	PRINT

Mantle Magnitud

Wphase Inversion

---#####--

Best Double Couple: M0=1.93E+29 dyn.cm Mw = 8.79 NP1: Strike=165 ; Dip=10 ; Slip= 55 NP2: Strike= 20 ; Dip=82 ; Slip= 96

Focal Mechanism

							_	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_						
				_	_	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_		_	_			
		_	_	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	 -		
	_	_	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	 		
	_	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_		 	_	
	#	#	#	#	#	#				#	#	#	#	#	#	#	#	#	_	_	_	_	_		_	_	 		_
# =	#	#	#	#	#	#		Т		#	#	#	#	#	#	#	#	#	_	_	_	_	_	_		_	 		
# =	#	#	#	#	#	#				#	#	#	#	#	#	#	#	_	_	_	_	_	_				 	_	
# =	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	_			 		
# =	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_				 		
	#	#	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	_		Р		 	_	
	₩ #	#	#	#	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	_	_				 		_
		#	 #	 #	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	_	_	_			_	 	_	
		_	#	#	#	#	#	#	#	#	#	#	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 		
					 #	#	#	#	#	#	#		_	_	_	_	_	_	_	_	_	_	_			_	-		
				_	_	_		#	#	_	_	_	_	_	_	_	_	_	_	_	_	_		_					
										_			_	_		_			_	_									
											#	#	#	#	#	#	#	#	#										

Moment Magnitude - Mw

 Calculated from seismic moment (Mo). Therefore related to fault slip not energy released as waves. More relevant for tsunamis, less relevant for damage from ground shaking.

- Harvard CMT and NEIC calculate Mw from the moment tensor solution.
- Fit shape and amplitude of long period surface waves to synthetics to model moment tensor and Mo.

Stein and Wysession, "An Introduction to seismology, earthquakes and Earth structure

Energy Discriminant

01:05:19 09/02 Mw: 7.20 EXIT

	STA	STATUS	ETA	THETA	
	HIA	PEND	00:00		
	KDAK	DONE		-6.23	
	YAK	DONE		-5.32	
	ULN	DONE		-5.37	
	TNA	DONE		-6.37	
	BILL	PEND	00:00		
,	RPN	PEND	00:00		
y	PMR	DONE		-5.81	
	EYAK	DONE		-5.86	
	DIV	PEND	00:00		
led	MCK	DONE		-5.86	
	LSA	PEND	00:00		
·	JCC	DONE		-5.94	
	SAO	DONE		-6.06	
	SIT	DONE		-6.14	
	COLA	DONE		-5.74	
	SNCC	PEND	00:00		
	PKD	DONE		-6.03	
	CRAG	DONE		-6.06	
	WDC	DONE		-6.00	
	YBH	DONE		-6.10	
	ORV	DONE		-6.30	
	CMB	DONE		-6.18	
	OSI	PEND	00:00		
	COR	DONE		-5.94	
	PAF	GAP	NA		
<mark>e</mark> !	SKAG	DONE		-6.09	
	PAS	PEND	00:00		
	KCC	DONE		REM	
	ISA	PEND	00:00		
	FINIS	HED	Mean Theta is:	-5.83(43)	PRINT

Theta = \log_{10} (Er / M_o)

E_r is the energy carried by high frequency P-waves and Mo is the seismic Moment. Basically it the ratio of the energy contain by high frequency P-waves to the energy released by the earthquake.

noaa

ATMENT OF

This is a slow, or tsunami earthquak

FINISHED

Mean Theta is: -5.83(43)

Integration window 70s

Theta = -5.1 GCMT Source Duration ~65s (Assumed)

GCMT Source Duration ~300s (Assumed)

Second Quake

Seismogeodetic Data ⇒ Combine Accelerometer Data with GNSS Data \Rightarrow Gives the *ultimate seismogram* It never "clips", and therefore can be used to assess earthquake magnitude even in the nearfield of great earthquakes \Rightarrow Can yield the magnitude of great earthquakes in ~3mins

Intergovernmental Oceanographic Commission UNESCO/IOC – NOAA ITIC Training Program in Hawaii (ITP-TEWS Chile) TSUNAMI EARLY WARNING SYSTEMS AND THE PACIFIC TSUNAMI WARNING CENTER (PTWC) ENHANCED PRODUCTS TSUNAMI EVACUATION PLANNING AND UNESCO IOC TSUNAMI READY PROGRAMME 19-30 August 2024, Valparaiso, Chile

Thank You

Stuart Weinstein NOAA/NWS/PTWC

